2-recognizability of the simple groups $b_n(3)$ and $c_n(3)$ by prime graph

نویسندگان

m. foroudi ghasemabadi

a. iranmanesh

n. ahanjideh

چکیده

let $g$ be a finite group and let $gk(g)$ be the prime graph of $g$. we assume that $ngeqslant 5 $ is an odd number. in this paper, we show that the simple groups $b_n(3)$ and $c_n(3)$ are 2-recognizable by their prime graphs. as consequences of the result, the characterizability of the groups $b_n(3)$ and $c_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are obtained. also, we can conclude that the aam's conjecture is true for the groups under study.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph

Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...

متن کامل

2-quasirecognizability of the simple groups B_n(p) and C_n(p) by prime graph

Let G be a finite group and let $GK(G)$ be the prime graph of G. We assume that $n$ is an odd number. In this paper, we show that if $GK(G)=GK(B_n(p))$, where $ngeq 9$ and $pin {3,5,7}$, then G has a unique nonabelian composition factor isomorphic to $B_n(p)$ or $C_n(p)$ . As consequences of our result, $B_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the ...

متن کامل

Simple groups with the same prime graph as $D_n(q)$

Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...

متن کامل

2-quasirecognizability of the simple groups b_n(p) and c_n(p) by prime graph

let g be a finite group and let $gk(g)$ be the prime graph of g. we assume that $n$ is an odd number. in this paper, we show that if $gk(g)=gk(b_n(p))$, where $ngeq 9$ and $pin {3,5,7}$, then g has a unique nonabelian composition factor isomorphic to $b_n(p)$ or $c_n(p)$ . as consequences of our result, $b_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the validity of a con...

متن کامل

quasirecognition by prime graph of finite simple groups ${}^2d_n(3)$

‎let $g$ be a finite group‎. ‎in [ghasemabadi et al.‎, ‎characterizations of the simple group ${}^2d_n(3)$ by prime graph‎ ‎and spectrum‎, ‎monatsh math.‎, ‎2011] it is‎ ‎proved that if $n$ is odd‎, ‎then ${}^2d _n(3)$ is recognizable by‎ ‎prime graph and also by element orders‎. ‎in this paper we prove‎ ‎that if $n$ is even‎, ‎then $d={}^2d_{n}(3)$ is quasirecognizable by‎ ‎prime graph‎, ‎i.e‎...

متن کامل

Recognition by prime graph of the almost simple group PGL(2, 25)

Throughout this paper, every groups are finite. The prime graph of a group $G$ is denoted by $Gamma(G)$. Also $G$ is called recognizable by prime graph if for every finite group $H$ with $Gamma(H) = Gamma(G)$, we conclude that $Gcong H$. Until now, it is proved that if $k$ is an odd number and $p$ is an odd prime number, then $PGL(2,p^k)$ is recognizable by prime graph. So if $k$ is even, the r...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 39

شماره 6 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023